

Change your Mind about Phosphorus:

High(er) Quality Products from Low Quality Rock or Urban Waste

Rob de Ruiter contact data for:

P-recycling (Ecophos): rob.deruiter@ecophos.com

Circular Economy (TNO): rob.deruiter@tno.nl

Linear vs Circular/New Economy

Some facts of today's linear economy

- 2700 I water to produce one T shirt
- 140 I water to produce one cup of coffee
- 1500 kgs waste to produce one laptop
- 2000 kgs waste to produce one golden ring
- 2 million plastic bottles each 5 minutes (globally)
- Microplastics found in German beer
- 30 million CD's wasted every day in the US
- 6000 die per day because of lack of water
- 925 Million sleep with hunger (13%) of the world's population

Do we need to change?

Or are we defending that everything is under control? **B**usiness as usual?

Linear vs New/Circular Economy

What can we, the P industry, do?

The Fertilizer industry spends less than 1% on innovation today! Let's <u>create more value</u> in the chain: ecologically, financially and socially based on the right DESIGN:

- Reduce waste
- Increase quality/performance (purity, preferred composition, plant availability)
- Decrease use of natural resources/get access to alternative resources (limiting geopolitical risks)

PEAK of High Grade Phosphate & Geopolitical Risks

It is an essential element There is no alternative **Ecophos Process**

The element phosphorus (P) is essential for all life on earth, from micro-organisms and plants to animals and man.

Every cell of every living organism on earth contains phosphorus.

What does that imply?

If we can use the low grade rock phosphate, the map of available phosphate dramatically changes.

The only condition : $\underline{\text{to have the right technology}}$

Alternative P sources (kt P/a)

	Waste Water	MBM	Manure	
EU	300	130	>1000	
NA	150	60	800	
China	600	200	>1000	

Manure (work to be done)

- Nutrient imbalance (N/P/K/C)
- P content is limiting spreading
- Local oversupply and transport issue, negative value, e.g. NL
- Fragmented stakeholder structure
- Try to align 3000 farmers
- NO TECHNOLOGY NO MARKET PRODUCT
- NO BUSINESS CASE

SEWAGE SLUDGE

STRUVITE (NH4MgPO4.6H20)

- Generates a lot of attention (50+ operators)
- Access to everybody's own phosphate
- Saves WWTP costs and down time
- Nutrient imbalance
- Magnesium? → Ca, K deficiencies
 (DEFRA HH3504SPO (White/Hammond field trials)
- Low recovery rate (3-25% on P) Ostara up to 40%(sludge hydrolysis at 150 degr C)
- Quality (Organics, Pathogens, drugs, Pharmaceuticals) → why not incinerate?
 - Product niche fertilizer on golf courses

SLUDGE INCINERATION

- All P in the ash
- More industry compatible material
- Large scale, centralized, mono-incinerators
- No organics, pathogens, drugs, et cetera
- Energy recovery possible
- Processes leading to known/accepted products (solving nutrient imbalance)
- Loss of N, C
- Large investments

Fly ashes vs. Phosphate rock

Element	Unit	Fly ash	Phosphate rock	
P_2O_5	%	23.6		20-27
Ca	%	12.7		35
Si	%	10		1.1
Al	%	6		0.2
Fe	%	9.4		0.9
Mg	%	1.7		0.9
K	%	2.2		0.09
Na	%	0.77		1
As	ppm	35		9.3
Cd	ppm	3.8		49
Cr	ppm	130		200
Cu	ppm	1200		200
Ni	ppm	67		125
Pb	Ppm	250		21
Ti	ppm	2900		160
Zn	ppm	3300		230
F	%	0		3.2
SO4	%	7.7		2.7
тос	%	0		3.35
CO2	%	0		7.2

- Need of an innovative approach to get rid of impurities
- Mono-incineration is a must to avoid P2O5 dilution

EcoPhos technology

- Modular Technology:
 - Adapt process to raw-material, products and co-products

An ECO-feasible Solution based on the right design

- Same market products, new process design
- 40% lower investment cost compared to conventional process

No rock beneficiation, Short residence time (45min-1h), High process yield (up to 99%) Reasonable temperature, atmospheric pressure, Simple material of construction Highly concentrated phosphoric acid out of filter (min 42% P2O5)

Up to 50% lower variable cost

Low-grade phosphate rock, no benefication, Low energy consumption

Green process:

- Low levels of Cd (or other HM): easily below 20mgCd/kgP205
- 6 times less waste!
- Low energy consumption!
- Pure and valuable co-products: non radioactive pure gypsum, Al/FeCl3 solution

Highly flexible plants:

Process adapted to client's raw materials and products

